fbpx

Bolesti srca, karcinomi, kronične boesti plauća, Alzhaimerova bolest, upala pluća i gripa povezane su sa ovim enzimom koji nastaje u našem tijelu.1 Riječ je o enzimu  5-lipoksigenazi  ili skraćeno 5-LOX (eng. 5-lipoxygenase) koji kada se stvora  u tijelu u prevelikoj količini pokreće cijelu kaskadu opasnih upalnih reakcija.

Ironično, upravo je ova sistematska  upalna reakcija uzrokovana 5-lipoksigenazom čuvala naše pretke od infektivnih bolesti.  S obzirom da se ove bolesti sve više iskorjenjuju, protupalna reakcija 5-lipoksigenaze ne samo da nije više nužna, nego je čak i smrtonosna.2-5 Znanstvenicima je ovaj enzim već otprije poznat  zbog njegove uloge u nastanku artritisa, astme i Crohnove bolesti, pa farmaceutska industrija pokušava razviti siguran lijek koji bi ublažio učinak 5-lipoksigenaze.  Međutim trenutno  dostupni  „5-LOX inhibitori“ nisu dovoljno sigurni da be se mogli slobodno uzimati bez liječničkog nadzora6,7  Na svu sreću, postoji razna hrana i biljke koje efiksano  spriječavaju djelovanje 5-lipoksigenaze. 

Kako višak  5-lipoksigenaze uništava zdravlje?

Zbog starenja i/ili loše prehane, u našem tijelu stvara se previše arahidonske kiseline. Da bi neutraliziralo arahidonsku kiselinu, naše tijelo pojačano proizvodi  5-lipoksigenazu (5-LOX). Povišene vrijednosti 5-LOX enzima te krajnji produkti razgradnje arahidonske kiseline usko su povezani s bolestima srednje i starije životne dobi.
U dolje prikazanom šematskom prikazu jasno je prikazano kako hrana tipična za zapadnjačku prehranu  uzrokuje stvaranje viška arahidonske kiseline te štetne posljedice povišenih vrijednosti enzima  5-lipoksigenaze.

arahidonska_kiselina

Shema prikazuje kako tijelo metabolizira „zapadnjačku“ prehranu  putem enzima 5-lipoksigenaza

5-lipoksigenaza potiče proizvodnju proupalnih molekula u tijelu koje se zovu leukotrieni.8 Stotine objavljenih zanstvenih studija povezuju leukotriene s pojavom kardiovaskularnih oboljenja9, karcinoma10-16, artritisa17-19,   te bolestima dišnog sustava kao što su astma i kronična opstruktivna plućna bolest (KOPB)8.  Ove molekule povezuju se i s Alzheimerovom bolešču20-25, inflamatornim bolestima debelog crijeva26-28 i osteoporozom.29,30

Prihvaćanjem zdravijih prehrambenih obrazaca smanjuje se razina 5-lipoksigenaze, iako tipična  zapadnjačka  prehrana i optimalna supresija 5-LOX i njenog štetnog djelovanja može biti izazov. Srećom, ekstrakt tamjana pokazao se djelotvoran kod inhibicije ovog enzima.

Kako zaustaviti prekomjerno stvaranje 5-lipoksigenaze? 

Tisućljećima su stare kulture priznavale smole tamjana i smirne  kao ugodan miris, ali također i kao lijek u liječenju reumatizma, groznice  i gastrointestinalnih poremećaja.

Moderna istraživanja su prvi put potvrdila medicinsku vrijednost tamjana otkrićem bosvelijskih kiselina koje se nalaze u tamjanu. 3-acetil-11-keto-betabosvelijska kiselina  (AKBA) se pokazala najučinkovitijom u inhibiciji 5-lipoksigenaze i spriječavanju nastanka proupalnih leukotriena.39,40 Pokusi na životinjama potvrdili su da ekstrakti tamjana imaju snažan protuupalni učinak posebice kod ublažavanja upale zglobova kod artritisa.41

Početna istraživanja na ljudima pokazala su sličan uvjerljiv rezultat potvrđujući tradicionalnu uporabu tamjana. Ekstrakti tamjana pokazali su se učinkoviti kod pacijenata koji su patili od reumatoidnog artritisa, Crohn-ove bolesti, ulcerativnog kolitisa i astme.39,42 Kroz tisućljeća upotrebe tamjana nisu priemijećene neke značajnije nuspojave. Novija toksikološka i sigurnosna istraživanja potvrdila su da ekstrakti tamjana imaju širok sigurnosni  spektar kako u vanjskoj tako i u  unutarnjoj primjeni.43

Renarthro - sinergijska formulacija ekstrakta tamjana, smirne i kolostruma

renarthro kutija 3D 30 kom 3 500x500Hrvatska tvrtka Farmavita razvila je proizvod Renarthro (www.renarthro.com) koji sadrži ekstrakt tamjana, ekstrakt smirne i kolostrum. U labororijskim ispitvanjima pronađeno je da ekstrakt smirne spriječava djelovanje enzima (hijaluronidaze, kolagenaze)  koji razgrađuju hrskavicu. Također je potvrđeno je da dodatak ekstrakta smirne pojačava djelovanje ostalih biljaka za 20-tak puta. U drugim laboratorijskim ispitivanjima potvrđeno je da PRP peptidi iz mlijeka također višestruko poboljašavaju djelovanje ostalih sastojaka.  Inovacija koju je tvrtka Farmavita patentno zaštitila je činjenica da kombinacija ova tri sastojaka tvori jedinstvenu  sinergiju koja je višestruko efikasnija od pojedinačnih komponenti. 

Zaštita srca i krvnih žila

Uloga upalnih procesa u tijelu kod pojave ateroskleroze (otvrdnuće i zakrčenje krvih žila) poznata je dulje  od 20 godina. Godine 1991. je otkriveno da jedan od čimbenika ateroskleroze je molekula koja je završni produkt porcesa koji započinje s djelovanjem enzima 5-lipoksigenaze.50,51 Tako se više od deset godina pokušavaju izolirati 5-LOX inhibitori koji bi spriječili ili čak preokrenuli pojavu starenja kardiovaskularnog sustava.52 Ekstrakti tamjana pokazali su se kao jedan od najboljih  prirodnih inhibitora 5-LOX enzima, kod pojave ateroskleroze.53

U vaskularnom tkivu, ekstrakti tamjana imaju višestruki učinak koji se nadopunjuju. Imaju snažan učinak na vezanje slobodnih radikala.54 Također, smanjuju ukupni kolesterol do 48% te povisuju „dobar kolesterol“ (kolesterol visoke gustoće- HDL) do 30 %.55 No, kardiolozima je upravo učinak ekstrakta tamjana na inhibiciju 5-lipoksigenaze i ostalih upalnih čimbenika najinteresantniji. U ljudskom kapilarnom endotelu, ekstrakti tamjana značajno utječu na spriječavanje stvaranja oštećenja stijenki povezanih sa aterosklerozom43,56. Pretpostavlja se da tamjan pozitivno modulira 113 gena koji su uključeni u stvaranju upale krvnih žila.56,57

Ekstrakti bogati s AKBA kiselinom, glavnim bioaktivnim agentom u tamjanu, pokazali su 50%-tno smanjenje oštećenja nastalih aterosklerozom.58 Također, značajno se smanjila aktivnost nekoliko različitih faktora koagulacije (zgrušavanja) u krvi. Slično djelovanje pripisuje se i gugulsteronima koji se nalaze u ekstraktu smirne.54

Neurozaštita i zdravlje mozga

Sastojak iz smole tamjanovog drveta pokazao se kao potencijalni stimulator sistema receptora u mozgu koji se zove TRPV3, a koji je odgovoran za regulaciju tjeskobe te djeluje slično kao antidepresivi.59

Jedna od glavnih komponenti jedne vrste tamjana Boswellia carterri, koji se zove acetat incensola, inhibira posrednike upale u moždanom tkivu, što je učinak koji koji pruža značajnu nadu u liječenju oštećenja moždanog tkiva.60 Opasne inflamatorne reakcije mozga mogu prouzročiti oštećenje moždanog tkiva unutar par sati, uzrokujući dugotrajne neurološke deficite.

Acetat incensola posebice inhibira degeneraciju moždanih stanica u hipokampusu, regiji mozga odgovornoj za memoriju.60 Istraživanja na životinjama potvrđuju ovaj učinak. Laboratorijski štakori kojima je davana supstanca za okrnjavanje memorije, zajedno sa ekstraktom tamjana, pokazali su puno bolje rezultate na testovima prostorne orijentacije i učenja nego životinje koje nisu uzimale ekstrakt tamjana.61 Slični rezultati dobiveni su i s životinjama kojima nije davana supstanca za uništavanje memorije. Ekstrakti dobiveni od Boswellia papyrifera, jedne od 5 vrsti tamjanovog drveta koje se koriste u proizvodnji mirisne smole tamjana, u testiranjima na štakorima pokazali su da je životinjama poboljšana prostorna orijentacija i da  brže pronađu put kroz labirint.62

Zaštita od karcinoma

Bosvelijska kiselina, jedna od glavnih komponenti tamjana, djeluje kroz nekoliko mehanizama koji spriječavaju proliferaciju (širenje) stanica karcinoma. AKBA inducira apoptozu ili programiranu smrt stanice tako što utječe na tzv. „receptor smrti“ na površini stanice koji uzrokuje  „samoubojstvo“ stanice karcinoma.63
Bosvelijska kiselina također blokira međustaničnu komunikaciju stanica karcinoma koja je zaslužna za replikaciju stanica.64 I AKBA dodatno koči rast tumora tako da inhibira faktor rasta VEGF (eng. vascular endothelial growth factor) kojeg stanice karcinoma trebaju za razvoj njima potrebnih novih krvnih žila.65
Naposlijetku, AKBA se nedavno pokazala efikasnom kod inhibicije staničnog receptora CXCR4 kojeg stanice karcinoma koriste da bi potaknule metastaze, a koje se smatraju uzrokom smrti kod karcinoma u 90% slučajeva. Do danas, ekstrakti tamjana su pokazali i obećavajuće rezultate kod smanjivanja rasta malignih stanica, replikacije ili metastaza kod karcinoma prostate, mokraćnog mjehura, cerviksa materinice, crijeva kao i kod multiplog mijeloma, raka koštane srži.66-73

Ekstrakti tamjana ublažavaju bol kod artritisa

Ranije studije s ekstraktima tamjana uključivale su i sastojke koji  su poznati po svojim  prouupalnim svojstvima poput biljke ašvagandha (Withania somnifera), kurkume (Curcuma longa) i cinka. U jednoj takvoj studiji, 42 pacijenta primala su kombinaciju ovih nutrijenata ili placebo kroz tri mjeseca.83 Grupa koja je primala ovu kombinaciju, za razliku od placebo grupe, osjetila je značajno olakšanje boli i veći stupnj pokretnosti zglobova.

Slična studija koja je koristila široko primjenjivan WOMAC osteoartritis indeks pokazala je značajnu redukciju ovog parametra kao i smanjenje boli i stupnja nepokretljivosti.84 Ni u jednoj studiji nisu zabilježene značajnije nus pojave.

Novija istraživanja provedena su isključivo s ekstraktima tamjana u dvostruko slijepoj, placebo-kontroliranoj studiji s dozom i do 3 600 mg dnevno. Opet, evidentirano je značajano poboljšanje  u svim parametrima, uključujući bolove u zglobovima,  oticanje zglobova, sposobnost pokretljivosti zglobova i povećanje kilometraže prilikom šetanja.85

Studija iz 2008. g. s ekstraktom tamjana koji sadržavao 30% AKBA kiseline provedena je na 70 pacijenata s osteoartritisom.86 Bolesnici su primali ekstrakt doze od 100 mg/dan, 250 mg/dan, ili placebo u razdoblju od 90 dana. Obje grupe koje su primale ekstrakt, ali ne i placebo grupa, pokazale su klinički i statistički značajno poboljšanje u indeksu boli i fizičkoj funkciji.86 Još neke značajke ove studije vrijedne su spominjanja. Prvo, uzorci zglobne tekućine pokazali su na značajan pad enzima MMP-3 (matriks metaloproteinaza-3), koji je zaslužan za upalne procese i propadanje hrskavice u osteoartritisu. Drugo, olakšanje boli i povećanje pokretljivosti bili su evidentni već nakon 7 dana od 90 dana studije.  Studija provedena je 2010. g. sa ekstraktima tamjana pokazala je sličan učinak.43

Na koji način se još može ublažiti učinak 5-LOX enzima

Tipična zapadnjačka prehrana obiluje omega-6 masnim kiselinama, zasičenim masnim kiselinama, rafiniranim ugljikohidratima i arahidonskom kiselinom. Prevelika konzumacija ove hrane i nedovoljan unos hrane bogate omega-3 masnim kiselinama značajno doprinosi razvoju sistemskih kroničnih upalnih oboljenja.
Ljudi koji se brinu o svom zdravlju koriste nutrijente kao što je riblje ulje ili kurkuma koji smanjuju aktivnost 5-lipoksigenaze u tijelu.109-111  Njihov utjecaj na supresiju 5-LOX enzima djelomično objašnjava i pregršt pogodnosti koji ovi nutrijenti pružaju.
Međutim, kako ljudi stare prekomjerno stvaranje 5-LOX enzima zahtjeva efikasnije metode za njegovu supresiju. Biljni preparati s ektraktom tamjana su uz prihvaćanje zdravijih prehrambenih navika, učinkovit prirodni način selektivne inhibicije 5-LOX enzima.112,113

Zaključak

Višak 5-lipoksigenaze uzrokuje stvaranje pro-inflamatornih molekula, uključujući leukotrijene. Upalni procesi u organizmu, koje pokreće enzim 5-lipoksigenaza,  povezani su sa sedam od deset vodećih uzoraka smrti u SAD-u, uključujući karcinom i bolesti srca.

Za sada postoji neznatan broj sigurnih lijekova koji inhibiraju 5-LOX, ali oni se moraju uzimati pod nadzorom  liječnika. Na sreću nedavno  su otkriveni prirodni 5-LOX inhibitori koji efikasno inhibiraju aktivnost ovog enzima. Obilje uvjerljivih podataka ukazuju da bioaktivne komponente tamjana blokiraju upalne reakcije nastale enzimom 5-LOX koji ubrzava pojavu brojnih smrtonosnih bolesti uzrokovanih starenjem. 

Svi oni koji žele spriječiti štetno djelovanje ovog enzima, koji žele produžiti svoj život u zdravlju, trebali bi usvojiti protu-upalnu prehranu u kojoj je smanjena ili izbačena upotreba crvenog mesa, iznutrica, kobasica, šećera i hrane s visokim glikemijskim indeksom.  Masti i  ulja u prehrani treba birati tako da imaju visok udio omega-3-nezasićenih kiselina (maslinovo, kokosovo, laneno, bučino i riblje ulje).  Uz to preporučamo svakog dana uzeti po jednu kapsulu Renarthra, kao dodatak protu-upalnoj prehrani.  

 

Reference

1. http://www.cdc.gov/nchs/fastats/lcod.htm.

2. Chinnici CM, Yao Y, Pratico D. The 5-lipoxygenase enzymatic pathway in the mouse brain: young versus old. Neurobiol Aging. 2007 Sep;28(9):1457-62.

3. Chu J, Pratico D. The 5-lipoxygenase as a common pathway for pathological brain and vascular aging. Cardiovasc Psychiatry Neurol. 2009;2009:174657.

4. Graham FD, Erlemann KR, Gravel S, Rokach J, Powell WS. Oxidative stress-induced changes in pyridine nucleotides and chemoattractant 5-lipoxygenase products in aging neutrophils. Free Radic Biol Med. 2009 Jul 1;47(1):62-71.

5. Zou Y, Kim DH, Jung KJ, et al. Lysophosphatidylcholine enhances oxidative stress via the 5-lipoxygenase pathway in rat aorta during aging. Rejuvenation Res. 2009 Feb;12(1):15-24.

6. Abe M, Yoshimoto T. Leukotriene-lipoxygenase pathway and drug discovery. Nihon Yakurigaku Zasshi. 2004 Dec;124(6):415-25.

7. Chohnabayashi N, Sugiura R, Nishimura N. Adverse effects of leukotriene-antagonists. Nihon Rinsho. 2007 Oct 28;65 Suppl 8:272-6.

8. Sampson AP. FLAP inhibitors for the treatment of inflammatory diseases. Curr Opin Investig Drugs. 2009 Nov;10(11):1163-72.

9. Jawien J, Korbut R. The current view on the role of leukotrienes in atherogenesis. J Physiol Pharmacol. 2010 Dec;61(6):647-50.

10. Goodman LA, Jarrett CL, Krunkosky TM, et al. 5-Lipoxygenase expression in benign and malignant canine prostate tissues. Vet Comp Oncol. 2011 Jun;9(2):149-57.

11. Angelucci A, Garofalo S, Speca S, et al. Arachidonic acid modulates the crosstalk between prostate carcinoma and bone stromal cells. Endocr Relat Cancer. 2008 Mar;15(1):91-100.

12. Faronato M, Muzzonigro G, Milanese G, et al. Increased expression of 5-lipoxygenase is common in clear cell renal cell carcinoma. Histol Histopathol. 2007 Oct;22(10):1109-18.

13. Grant GE, Rubino S, Gravel S, et al. Enhanced formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by cancer cells in response to oxidative stress, docosahexaenoic acid and neutrophil-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid. Carcinogenesis. 2011 Jun;32(6):822-8.

14. Kim EY, Seo JM, Cho KJ, Kim JH. Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene. 2010 Feb 25;29(8):1167-78.

15. Radmark O, Samuelsson B. Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. J Intern Med. 2010 Jul;268(1):5-14.

16. Ye YN, Liu ES, Shin VY, Wu WK, Cho CH. Contributory role of 5-lipoxygenase and its association with angiogenesis in the promotion of inflammation-associated colonic tumorigenesis by cigarette smoking. Toxicology. 2004 Oct 15;203(1-3):179-88.

17. Chen M, Lam BK, Luster AD, et al. Joint tissues amplify inflammation and alter their invasive behavior via leukotriene B4 in experimental inflammatory arthritis. J Immunol. 2010 Nov 1;185(9):5503-11.

18. Chen SH, Fahmi H, Shi Q, Benderdour M. Regulation of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase-activating protein/5-lipoxygenase by 4-hydroxynonenal in human osteoarthritic chondrocytes. Arthritis Res Ther. 2010;12(1):R21.

19. Mathis SP, Jala VR, Lee DM, Haribabu B. Nonredundant roles for leukotriene B4 receptors BLT1 and BLT2 in inflammatory arthritis. J Immunol. 2010 Sep 1;185(5):3049-56.

20. Chu J, Pratico D. 5-lipoxygenase as an endogenous modulator of amyloid beta formation in vivo. Ann Neurol. 2011 Jan;69(1):34-46.

21. Chu J, Pratico D. Pharmacologic blockade of 5-lipoxygenase improves the amyloidotic phenotype of an Alzheimer's disease transgenic mouse model involvement of gamma-secretase. Am J Pathol. 2011 Apr;178(4):1762-9.

22. Firuzi O, Zhuo J, Chinnici CM, Wisniewski T, Pratico D. 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer's disease. FASEB J. 2008 Apr;22(4):1169-78.

23. Ikonomovic MD, Abrahamson EE, Uz T, Manev H, Dekosky ST. Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer's disease. J Histochem Cytochem. 2008 Dec;56(12):1065-73.

24. Klegeris A, McGeer PL. Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol Aging. 2002 Sep-Oct;23(5):787-94.

25. Qu T, Manev R, Manev H. 5-Lipoxygenase (5-LOX) promoter polymorphism in patients with early-onset and late-onset Alzheimer's disease. J Neuropsychiatry Clin Neurosci. 2001 Spring;13(2):304-5.

26. Cuzzocrea S, Rossi A, Mazzon E, et al. 5-Lipoxygenase modulates colitis through the regulation of adhesion molecule expression and neutrophil migration. Lab Invest. 2005 Jun;85(6):808-22.

27. Mazzon E, Sautebin L, Caputi AP, Cuzzocrea S. 5-lipoxygenase modulates the alteration of paracellular barrier function in mice ileum during experimental colitis. Shock. 2006 Apr;25(4):377-83.

28. Rask-Madsen J, Bukhave K, Laursen LS, Lauritsen K. 5-Lipoxygenase inhibitors for the treatment of inflammatory bowel disease. Agents Actions. 1992;Spec No:C37-46.

29. Boyce BF, Hughes DE, Wright KR, Xing L, Dai A. Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Lab Invest. 1999 Feb;79(2):83-94.

30. Mundy GR. Cytokines and growth factors in the regulation of bone remodeling. J Bone Miner Res. 1993 Dec;8 Suppl 2:S505-10.

31. Bell RL, Harris RR, Malo PE, et al. ABT-761 attenuates bronchoconstriction and pulmonary inflammation in rodents. J Pharmacol Exp Ther. 1997 Mar;280(3):1366-73.

32. Cuzzocrea S, Rossi A, Serraino I, et al. 5-Lipoxygenase knockout mice exhibit a resistance to pleurisy and lung injury caused by carrageenan. J Leukoc Biol. 2003 Jun;73(6):739-46.

33. Doi K, Hamasaki Y, Noiri E, et al. Role of leukotriene B4 in accelerated hyperlipidaemic renal injury. Nephrology (Carlton). 2011 Mar;16(3):304-9.

34. Gubitosi-Klug RA, Talahalli R, Du Y, Nadler JL, Kern TS. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes. 2008 May;57(5):1387-93.

35. Kim DC, Hsu FI, Barrett NA, et al. Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation. J Immunol. 2006 Apr 1;176(7):4440-8.

36. Martinez-Clemente M, Claria J, Titos E. The 5-lipoxygenase/leukotriene pathway in obesity, insulin resistance, and fatty liver disease. Curr Opin Clin Nutr Metab Care. 2011 Jul;14(4):347-53.

37. Pace E, Profita M, Melis M, et al. LTB4 is present in exudative pleural effusions and contributes actively to neutrophil recruitment in the inflamed pleural space. Clin Exp Immunol. 2004 Mar;135(3):519-27.

38. Zhou YJ, Wang JH, Li L, Yang HW, Wen de L, He QC. Expanding expression of the 5-lipoxygenase/leukotriene B4 pathway in atherosclerotic lesions of diabetic patients promotes plaque instability. Biochem Biophys Res Commun. 2007 Nov 9;363(1):30-6.

39. Ammon HP. Boswellic acids (components of frankincense) as the active principle in treatment of chronic inflammatory diseases. Wien Med Wochenschr. 2002;152(15-16):373-8.

40. Sailer ER, Subramanian LR, Rall B, Hoernlein RF, Ammon HP, Safayhi H. Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br J Pharmacol. 1996 Feb;117(4):615-8.

41. Fan AY, Lao L, Zhang RX, et al. Effects of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in lewis rats. J Ethnopharmacol. 2005 Oct 3;101(1-3):104-9.

42. Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006 Oct;72(12):1100-16.

43. Lalithakumari K, Krishnaraju AV, Sengupta K, Subbaraju GV, Chatterjee A. Safety and Toxicological Evaluation of a Novel, Standardized 3-O-Acetyl-11-keto-beta-Boswellic Acid (AKBA)-Enriched Boswellia serrata Extract (5-Loxin(R)). Toxicol Mech Methods. 2006;16(4):199-226.

44. http://www.cdc.gov/nchs/fastats/arthrits.htm.

45. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. Lancet Neurol. 2011 Jul 18.

46. http://www.cdc.gov/nchs/fastats/asthma.htm.

47. http://www.cdc.gov/nchs/fastats/cancer.htm.

48. http://www.cdc.gov/nchs/fastats/heart.htm.

49.http://www.cdc.gov/nchs/fastats/kidbladd.htm.

50. Hagihara H, Nomoto A, Mutoh S, Yamaguchi I, Ono T. Role of inflammatory responses in initiation of atherosclerosis: effects of anti-inflammatory drugs on cuff-induced leukocyte accumulation and intimal thickening of rabbit carotid artery. Atherosclerosis. 1991 Nov;91(1-2):107-16.

51. Hatmi M, Samama MM, Elalamy I. Prevention of thrombosis and vascular inflammation: importance of combined cyclooxygenase and 5-lipoxygenase inhibitors. J Mal Vasc. 2006 Feb;31(1):4-9.

52. Zweifel BS, Hardy MM, Anderson GD, Dufield DR, Pufahl RA, Masferrer JL. A rat air pouch model for evaluating the efficacy and selectivity of 5-lipoxygenase inhibitors. Eur J Pharmacol. 2008 Apr 14;584(1):166-74.

53. Tripathi YB, Reddy MM, Pandey RS, et al. Anti-inflammatory properties of BHUx, a polyherbal formulation to prevent atherosclerosis. Inflammopharmacology. 2004;12(2):131-52.

54. Kokkiripati PK, Bhakshu LM, Marri S, et al. Gum resin of Boswellia serrata inhibited human monocytic (THP-1) cell activation and platelet aggregation. J Ethnopharmacol. 2011 Jul 8.

55. Pandey RS, Singh BK, Tripathi YB. Extract of gum resins of Boswellia serrata L. inhibits lipopolysaccharide induced nitric oxide production in rat macrophages along with hypolipidemic property. Indian J Exp Biol. 2005 Jun;43(6):509-16.

56. Roy S, Khanna S, Shah H, et al. Human genome screen to identify the genetic basis of the anti-inflammatory effects of Boswellia in microvascular endothelial cells. DNA Cell Biol. 2005 Apr;24(4):244-55.

57. Roy S, Khanna S, Krishnaraju AV, et al. Regulation of vascular responses to inflammation: inducible matrix metalloproteinase-3 expression in human microvascular endothelial cells is sensitive to antiinflammatory Boswellia. Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):653-60.

58. Cuaz-Perolin C, Billiet L, Bauge E, et al. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):272-7.

59. Moussaieff A, Rimmerman N, Bregman T, et al. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J. 2008 Aug;22(8):3024-34.

60. Moussaieff A, Shein NA, Tsenter J, et al. Incensole acetate: a novel neuroprotective agent isolated from Boswellia carterii.

J Cereb Blood Flow Metab. 2008 Jul;28(7):1341-52.

61. Hosseini M, Hadjzadeh MA, Derakhshan M, et al. The beneficial effects of olibanum on memory deficit induced by hypothyroidism in adult rats tested in Morris water maze. Arch Pharm Res. 2010 Mar;33(3):463-8.

62. Mahmoudi A, Hosseini-Sharifabad A, Monsef-Esfahani HR, et al. Evaluation of systemic administration of Boswellia papyrifera extracts on spatial memory retention in male rats.

J Nat Med. 2011 Jul;65(3-4):519-25.

63. Lu M, Xia L, Hua H, Jing Y. Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res. 2008 Feb 15;68(4):1180-6.

64. Kunnumakkara AB, Nair AS, Sung B, Pandey MK, Aggarwal BB. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res. 2009 Jan;7(1):118-28.

65. Pang X, Yi Z, Zhang X, et al. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res. 2009 Jul 15;69(14):5893-900.

66. Frank MB, Yang Q, Osban J, et al. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement Altern Med. 2009;9:6.

67. Park B, Sung B, Yadav VR, Cho SG, Liu M, Aggarwal BB. Acetyl-11-keto-beta-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int J Cancer. 2011 Jul 1;129(1):23-33.

68. Yuan HQ, Kong F, Wang XL, Young CY, Hu XY, Lou HX. Inhibitory effect of acetyl-11-keto-beta-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochem Pharmacol. 2008 Jun 1;75(11):2112-21.

69. Yadav VR, Prasad S, Sung B, et al. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive, and angiogenic biomarkers. Int J Cancer. 2011 Jun 23.

70. Liu JJ, Duan RD. LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells. Anticancer Res. 2009 Aug;29(8):2987-91.

71. Bhushan S, Malik F, Kumar A, et al. Activation of p53/p21/PUMA alliance and disruption of PI-3/Akt in multimodal targeting of apoptotic signaling cascades in cervical cancer cells by a pentacyclic triterpenediol from Boswellia serrata. Mol Carcinog. 2009 Dec;48(12):1093-108.

72. Dreikorn K. The role of phytotherapy in treating lower urinary tract symptoms and benign prostatic hyperplasia. World J Urol. 2002 Apr;19(6):426-35.

73. Paubert-Braquet M, Cave A, Hocquemiller R, et al. Effect of Pygeum africanum extract on A23187-stimulated production of lipoxygenase metabolites from human polymorphonuclear cells. J Lipid Mediat Cell Signal. 1994 May;9(3):285-90.

74. Paubert-Braquet M, Mencia Huerta JM, Cousse H, Braquet P. Effect of the lipidic lipidosterolic extract of Serenoa repens (Permixon) on the ionophore A23187-stimulated production of leukotriene B4 (LTB4) from human polymorphonuclear neutrophils. Prostaglandins Leukot Essent Fatty Acids. 1997 Sep;57(3):299-304.

75. Safarinejad MR. Urtica dioica for treatment of benign prostatic hyperplasia: a prospective, randomized, double-blind, placebo-controlled, crossover study. J Herb Pharmacother. 2005;5(4):1-11.

76. Lopatkin NA, Sivkov AV, Medvedev AA, et al. Combined extract of Sabal palm and nettle in the treatment of patients with lower urinary tract symptoms in double blind, placebo-controlled trial. Urologiia. 2006 Mar-Apr (2):12, 14-9.

77. Mantovani F. Serenoa repens in benign prostatic hypertrophy: analysis of 2 Italian studies. Minerva Urol Nefrol. 2010 Dec;62(4):335-40.

78. Pavone C, Abbadessa D, Tarantino ML, et al. Associating Serenoa repens, Urtica dioica and Pinus pinaster. Safety and efficacy in the treatment of lower urinary tract symptoms. Prospective study on 320 patients. Urologia. 2010 Jan-Mar;77(1):43-51.

79. Quiles MT, Arbos MA, Fraga A, de Torres IM, Reventos J, Morote J. Antiproliferative and apoptotic effects of the herbal agent Pygeum africanum on cultured prostate stromal cells from patients with benign prostatic hyperplasia (BPH). Prostate. 2010 Jul 1;70(10):1044-53.

80. Ejike CE, Ezeanyika LU. Inhibition of the Experimental Induction of Benign Prostatic Hyperplasia: A Possible Role for Fluted Pumpkin (Telfairia occidentalis Hook f.) Seeds. Urol Int. 2011 Jun 28.

81. Schleich S, Papaioannou M, Baniahmad A, Matusch R. Extracts from Pygeum africanum and other ethnobotanical species with antiandrogenic activity. Planta Med. 2006 Jul;72(9):807-13.

82. Papaioannou M, Schleich S, Roell D, et al. NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth. Invest New Drugs. 2010 Dec;28(6):729-43.

83. Kulkarni RR, Patki PS, Jog VP, Gandage SG, Patwardhan B. Treatment of osteoarthritis with a herbomineral formulation: a double-blind, placebo-controlled, cross-over study. J Ethnopharmacol. 1991 May-Jun;33(1-2):91-5.

84. Chopra A, Lavin P, Patwardhan B, Chitre D. A 32-week randomized, placebo-controlled clinical evaluation of RA-11, an Ayurvedic drug, on osteoarthritis of the knees. J Clin Rheumatol. 2004 Oct;10(5):236-45.

85. Kimmatkar N, Thawani V, Hingorani L, Khiyani R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee--a randomized double blind placebo controlled trial. Phytomedicine. 2003 Jan;10(1):3-7.

86. Sengupta K, Alluri KV, Satish AR, et al. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin for treatment of osteoarthritis of the knee. Arthritis Res Ther. 2008;10(4):R85.

87. Marone PA, Lau FC, Gupta RC, Bagchi M, Bagchi D. Safety and toxicological evaluation of undenatured type II collagen. Toxicol Mech Methods. 2010 May;20(4):175-89.

88. Bagchi D, Misner B, Bagchi M, et al. Effects of orally administered undenatured type II collagen against arthritic inflammatory diseases: a mechanistic exploration. Int J Clin Pharmacol Res. 2002;22(3-4):101-10.

89. Deparle LA, Gupta RC, Canerdy TD, et al. Efficacy and safety of glycosylated undenatured type-II collagen (UC-II) in therapy of arthritic dogs. J Vet Pharmacol Ther. 2005 Aug;28(4):385-90.

90. D'Altilio M, Peal A, Alvey M, et al. Therapeutic Efficacy and Safety of Undenatured Type II Collagen Singly or in Combination with Glucosamine and Chondroitin in Arthritic Dogs. Toxicol Mech Methods. 2007;17(4):189-96.

91. Trentham DE, Dynesius-Trentham RA, Orav EJ, et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science. 1993 Sep 24;261(5129):1727-30.

92. Crowley DC, Lau FC, Sharma P, et al. Safety and efficacy of undenatured type II collagen in the treatment of osteoarthritis of the knee: a clinical trial. Int J Med Sci. 2009;6(6):312-21.

93. Hunt CD. Regulation of enzymatic activity: one possible role of dietary boron in higher animals and humans. Biol Trace Elem Res. 1998 Winter;66(1-3):205-25.

94. Scorei IR. Calcium fructoborate: plant-based dietary boron as potential medicine for cancer therapy. Front Biosci (Schol Ed). 2011;3:205-15.

95. Scorei R, Cimpoiasu VM, Iordachescu D. In vitro evaluation of the antioxidant activity of calcium fructoborate. Biol Trace Elem Res. 2005 Nov;107(2):127-34.

96. Scorei R, Ciubar R, Iancu C, Mitran V, Cimpean A, Iordachescu D. In vitro effects of calcium fructoborate on fMLP-stimulated human neutrophil granulocytes. Biol Trace Elem Res. 2007 Jul;118(1):27-37.

97. Scorei R, Mitrut P, Petrisor I, Scorei I. A Double-Blind, Placebo-Controlled Pilot Study to Evaluate the Effect of Calcium Fructoborate on Systemic Inflammation and Dyslipidemia Markers for Middle-Aged People with Primary Osteoarthritis. Biol Trace Elem Res. 2011 May 24.

98. Scorei RI, Ciofrangeanu C, Ion R, et al. In vitro effects of calcium fructoborate upon production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages. Biol Trace Elem Res. 2010 Jun;135(1-3):334-44.

99. Scorei RI, Rotaru P. Calcium Fructoborate-Potential Anti-inflammatory Agent. Biol Trace Elem Res. 2011 Jan 28.

100. Wagner CC, Ferraresi Curotto V, Pis Diez R, Baran EJ. Experimental and theoretical studies of calcium fructoborate. Biol Trace Elem Res. 2008 Apr;122(1):64-72.

101. Ali AA, Lewis SM, Badgley HL, Allaben WT, Leakey JE. Oral glucosamine increases expression of transforming growth factor beta1 (TGFbeta1) and connective tissue growth factor (CTGF) mRNA in rat cartilage and kidney: implications for human efficacy and toxicity. Arch Biochem Biophys. 2011 Jun 1;510(1):11-8.

102. Black C, Clar C, Henderson R, et al. The clinical effectiveness of glucosamine and chondroitin supplements in slowing or arresting progression of osteoarthritis of the knee: a systematic review and economic evaluation. Health Technol Assess. 2009 Nov;13(52):1-148.

103. Gruenwald J, Petzold E, Busch R, Petzold HP, Graubaum HJ. Effect of glucosamine sulfate with or without omega-3 fatty acids in patients with osteoarthritis. Adv Ther. 2009 Sep;26(9):858-71.

104. Igarashi M, Kaga I, Takamori Y, Sakamoto K, Miyazawa K, Nagaoka I. Effects of glucosamine derivatives and uronic acids on the production of glycosaminoglycans by human synovial cells and chondrocytes. Int J Mol Med. 2011 Jun;27(6):821-7.

105. Igarashi M, Sakamoto K, Nagaoka I. Effect of glucosamine, a therapeutic agent for osteoarthritis, on osteoblastic cell differentiation. Int J Mol Med. 2011 Sep;28(3):373-9.

106. Ivanovska N, Dimitrova P. Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine. Arthritis Res Ther. 2011 Mar 16;13(2):R44.

107. Ng NT, Heesch KC, Brown WJ. Efficacy of a progressive walking program and glucosamine sulphate supplementation on osteoarthritic symptoms of the hip and knee: a feasibility trial. Arthritis Res Ther. 2010;12(1):R25.

108. Petersen SG, Saxne T, Heinegard D, et al. Glucosamine but not ibuprofen alters cartilage turnover in osteoarthritis patients in response to physical training. Osteoarthritis Cartilage. 2010 Jan;18(1):34-40.

109. Taccone-Gallucci M, Manca-di-Villahermosa S, Battistini L, et al. N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int. 2006 Apr;69(8):1450-4.

110. Calder PC. N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids. 2003 Apr;38(4):343-52.

111. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009 Feb;30(2):85-94.

112. Safayhi H, Rall B, Sailer ER, Ammon HP. Inhibition by boswellic acids of human leukocyte elastase. J Pharmacol Exp Ther. 1997 Apr;281(1):460-3.

113. Safayhi H, Sailer ER, Ammon HP. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol Pharmacol. 1995 Jun;47(6):1212-6.

Comments powered by CComment